
This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

ADDUCTS OF THEOBROMINE WITH 3d METAL PERCHLORATES

Chester M. Mikulski^a; Matthew K. Kurlan^a; Monica Bayne^a; Michele Gaul^a; Nicholas M. Karayannis^b ^a Department of Chemistry & Physics, Beaver College, Glenside, PA, U.S.A. ^b Amoco Chemical Company, Naperville, IL, U.S.A.

To cite this Article Mikulski, Chester M. , Kurlan, Matthew K. , Bayne, Monica , Gaul, Michele and Karayannis, Nicholas M.(1988) 'ADDUCTS OF THEOBROMINE WITH 3d METAL PERCHLORATES', Journal of Coordination Chemistry, 17: 3, 267 – 275

To link to this Article: DOI: 10.1080/00958978808070777 URL: http://dx.doi.org/10.1080/00958978808070777

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem. 1988, Vol. 17. pp. 267–275 Reprints available directly from the publisher Photocopying permitted by license only

ADDUCTS OF THEOBROMINE WITH 3d METAL PERCHLORATES*

CHESTER M. MIKULSKI, MATTHEW K. KURLAN, MONICA BAYNE, MICHELE GAUL

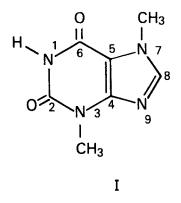
Department of Chemistry & Physics, Beaver College, Glenside, PA 19038, U.S.A.

and NICHOLAS M. KARAYANNIS

Amoco Chemical Company, P.O. Box 400, Naperville, IL 60566, U.S.A.

(Received July 24, 1987)

Adducts of theobromine (tbH) with 3d metal perchlorates ($M^{n+} = Cr^{3+}$, Mn^{2+} , Fe^{2+} , Fe^{3+} , Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+}) were prepared by refluxing mixtures of the ligand and a metal salt in ethyl acetate-triethyl orthoformate. The new complexes invariably involve 2:1 molar ratios of tbH to metal ion and are apparently monomeric with terminal tbH ligands binding *via* a ring nitrogen (N9 or N1). The Mn²⁺, Cu²⁺ and Zn²⁺ complexes are distorted tetrahedral, involving two tbH and two unidentate perchlorato ligands in the first coordination sphere of the metal ion. The remaining metal(II) complexes (Fe, Co, Ni) were obtained as monohydrates. These compounds are pentacoordinated of the [M(tbH)₂(OClO₃)₂(OH₂)] type, containing one aqua ligand in addition to the tbH and perchlorato ligands. The Cr³⁺ and Fe³⁺ complexes are low-symmetry hexacoordinated, with two tbH ligands, two unidentate and one bidentate chelating perchlorate ligands.


Keywords: theobromine, complexes, first row, synthesis, perchlorate

INTRODUCTION

The metal complexes of methyl-substituted xanthines, such as caffeine (caf; 1,3,7-trimethyl-), isocaffeine (1,3,9-trimethyl-), theobromine (tbH; 3,7-dimethyl-; I) and theophylline (tpH; 1,3-dimethyl-), are attracting increasing attention. The free bases are important components of tea, coffee, cocoa and chocolate products, and have found medicinal applications as stimulants, diuretics and for their cardiovascular effects.² They are also relevant to cancer therapy because of their ability to sensitize cells towards the cytotoxic effects of UV radiation, alkylating agents and *cis*-Pt(NH₃)₂Cl₂.³ Metal complexes of tpH have been studied to the largest extent,⁴ while the number of research papers on caf metal complexes shows a significant increase recently.^{5,6} In contrast, there is a relative paucity of information on complexes of tbH. Earlier work on theobromine complexes has included the crystal structure determination of (tbH)₂I₂O₈,⁷ spectral investigations of the complexation tbH with sodium benzoate,⁸ Brönsted (HCl, HI, HSbCl₆, HPF₆, HAsF₆) and carboxylic acids⁹ and the preparation of Rh(CO)(PPh₃)₂(tb).¹⁰ More recent work includes the preparation and characterization of Cu(tbH)₂(ClO₄)₂,¹¹ Cu(tbH)(CH₃CH₂COO)₂,¹² Pd(tbH)(tb)Cl¹³ and ZrO(tbH)₂(tb)Cl·H₂O,¹⁴ and the crystal structure determination of K[Pt(tbH)Cl₃]·H₂O.¹⁵ In the latter complex, which was prepared under acidic conditions, tbH binds through the N9 imidazole

^{*} Presented in part at the 193rd Natl. Meetg., Am. Chem. Soc., see ref. 1.

nitrogen to $Pt^{2+,15}$ This is not necessarily indicative of a general trend for terminal unidentate tbH. In fact, tpH was found to bind through N9 only in complexes (including (tpH₂)[Pt(tpH)Cl₃]),^{16,17} prepared under sufficiently acidic conditions to preclude ionization at N7,¹⁸ while in most of its metal complexes tpH binds through N7,¹⁸⁻²⁰ which is the protonation site of the free neutral ligand. Purines have the tendency to use the ring nitrogen protonated in the free base as their primary binding site, but, on the other hand, their imidazole ring nitrogens are more prone than the pyrimidine nitrogen is protonated^{22,23} as shown in I. In view of this, N1 and N9 were considered as about equally likely to act as the binding site of terminal unidentate tbH.^{11,12} It should be also noted that the presence of a bridging bidentate tb⁻ in Pd(tbH)(tb)Cl, binding *via* N1,N9, has been proposed (infinite $\frac{1}{4}$ Pd-tb- $\frac{1}{4x}$ chains).¹³ Binding of bidentate bridging purines *via* N1,N9 has not been so far established; the closest analogy is that of Cu(hxH)SO₄·H₂O (hxH = hypoxanthine), the crystal structure determination of which revealed the presence of infinite $\frac{1}{4}$ Cu-hxH- $\frac{1}{4x}$

Special interest in these laboratories has attended the syntheses and characterization of 3d metal perchlorate complexes with purines.^{4,25-29} Following the preparation of the tetrahedral [Cu(tbH)₂(OClO₃)₂] adduct from ethanol-triethyl orthoformate (teof),¹¹ we attempted to synthesize tbH adducts with other 3d metal perchlorates from the same medium, but failed to obtain solid products. We later developed an alternative synthetic method, involving the use of ethyl acetate (ea)-teof as the preparation medium.³⁰ This method proved to be generally more rapid and efficient (higher yields) than that using ethanol-teof,³⁰ and was successfully employed in the preparation of crystalline tbH adducts with a series of 3d metal perchlorates ($M^{n+} = Cr^{3+}, Mn^{2+}, Fe^{2+}, Fe^{3+}, Co^{2+}, Ni^{2+}, Cu^{2+}, Zn^{2+}$).¹ The tbH adducts were obtained in 59–100% yields (Table I); regarding the Cu²⁺ adduct, it was obtained in 95% yield from ea-teof, whereas its yield from EtOH-teof was only 73.5%.¹¹ The present paper deals with the syntheses of the above tbH adducts and their characterization by means of spectral, magnetic and conductance studies.

THEOBROMINE COMPLEXES

Complex	Colour	Yield %	С %	Н%	N %	М %	Cl %
$Cr(tbH)_2(ClO_4)_3$	Olive green	78	23.84 (23.66)	2.08 (2.27)	16.12 (15.77)	7.40 (7.32)	15.20 (14.97)
$Mn(tbH)_2(ClO_4)_2$	Cream white	59	27.67 (27.38)	2.71 (2.63)	18.11 (18.24)	8.86 (8.95)	11.41 (11.54)
$Fe(tbH)_2(ClO_4)_2 \cdot H_2O$	Mustard yellow	69	26.70 (26.56)	2.94 (2.87)	17.97 (17.70)	8.97 (8.82)	11.58 (11.20)
$Fe(tbH)_2(ClO_4)_3$	Orange brown	91	23.00 (23.53)	2.47 (2.26)	15.34 (15.68)	7.53 (7.82)	14.91 (14.89)
$Co(tbH)_2(ClO_4)_2 \cdot H_2O$	Lavender	90	26.88 (26.43)	2.67 (2.85)	18.02 (17.61)	9.29 (9.26)	11.33 (11.15)
$Ni(tbH)_2(ClO_4)_2 \cdot H_2O$	Light green	100	26.50 (26.44)	2.91 (2.85)	17.47 (17.62)	9.45 (9.23)	11.36 (11.15)
Cu(tbH) ₂ (ClO ₄) ₂ ^b	Light yellow	95	27.29 (27.00)	2.63 (2.59)	17.76 (17.99)	10.28 (10.20)	11.60 (11.39)
$Zn(tbH)_2(ClO_4)_2$	White	69	26.79 (26.92)	2.45 (2.58)	17.82 (17.94)	10.58 (10.47)	11.64 (11.85)

 TABLE I

 Analytical Data for tbH Adducts with Metal Perchlorates.^a

^a Found % with Calc. % in parentheses. ^bCu²⁺ complex prepared from ea-teof (this work); the same complex was previously prepared from EtOH-teof in 73.4% yield (analysis: C 27.17%; H 2.78%; N 18.15%; Cu 9.97%; Cl 11.47%).¹¹

EXPERIMENTAL

The synthetic method employed was identical to that previously used for the preparation of tpH adducts with the same metal perchlorates,⁴ *i.e.*: 1.25 mmol of hydrated metal perchlorate is dissolved in a mixture of 35 cm^3 ea and 15 cm^3 teof, 2.5 mmol (for M²⁺) or 3.75 mmol (for M³⁺) of tbH are added, and the resultant mixture is refluxed for 6 h or until no further significant change in appearance is noted. The mixture is then allowed to cool to room temperature, $15-20 \text{ cm}^3$ anhydrous diethyl ether are added and the volume is subsequently reduced at low heat to about 20 cm³. The solid residue is separated by filtration, washed with 30 cm³ diethyl ether and stored *in vacuo* over anhydrous CaSO₄. The new metal complexes were generally isolated in the form of crystalline free-flowing powders. 2:1 tbH to metal ion adducts were formed in all cases, as indicated by analytical results (Table I). The Fe²⁺, Co²⁺ and Ni²⁺ complexes were isolated as monohydrates, while the remaining complexes are anhydrous 2:1 adducts. The complexes exhibit limited solubility in organic media. Their solubility increases when certain binary solvent mixtures, such as nitromethane-acetone, are used.

IR spectra of tbH and its metal complexes (Table II) were recorded in KBr discs $(4000-500 \text{ cm}^{-1})$ and Nujol mulls between NaCl $(4000-500 \text{ cm}^{-1})$ and high density polyethylene $(700-200 \text{ cm}^{-1})$ windows, using a Perkin-Elmer 621 spectrophotometer. Solid-state (Nujol mull) electronic spectra, magnetic susceptibility (300 K) and conductance measurements (on $10^{-3}M$ solutions of the complexes in 1:1 (v/v) nitromethane-acetone at 25°C) (Table III) were obtained by methods previously described.³¹

-H4)	M - C'r ³⁺	M = Mn ²⁺	M = Fe ^{2 +}	$M = Fe^{3+}$	$M = Co^{2^*}$	M = Ni ²⁺	$M = Cu^{2+}$	M - Zn ²⁺	Band assignment
			3455m,b		3460m.b	3480m,b		-	v _{on} (aqua)
3150m.3112m 2030m 2825m	3174m.3120m 2024m 2024	3158m,3118m 3023m,3221	3168m,3114m 20222077	3165m.3111m	3160m.3115m 20252526	3170m.3118m 2020	3166m.3116m 3040m 2829	3160m,3120m 2020	N ₆₁₄ + V ₄₁
	MACOTINECOC	W1202,1117,207	W1202,00000	20124111-2020	MUT07"IIICCOX	WUCOT 1114000	MOTOT 110404	W0202,110202	
d.svc801	1671vs	l662vs 1662vs	1664vs 1664vs	1671vs 1671vs	l665vs 1665vs	1692vs 1669vs	1690vs,vb	l 666vs	Vc 0
l 595s,sh	1617m,1598m	1590m,1557m	1637s.sh	161 1m.1592m	1640s.sh.	1635s.sh.	1600mw.sh	1591m,1562m)	Šumi + V +
1547m.b	1568m,1551m	1542m,1520w	I 589m, I 558m	1561m,1547m	1600m,1590m	1592m,1560m	1559mw.sh	I 545ms,	
	1.546m		I 540m		l562m,1547m	l 549ms	1543m	1520w)	V _C х + ð _{NH}
1479w.sh	1492m,1471m	1481m,1460m	1480m,1459m	1483m,1463m	1481m,1463m	1488m,1463m	1490w,1454s	148.3m,1462m	Ring vibrations
1449%,1422m	1450m,1438m	1450m,1439m	1450m,1419m	1454m, 1424m	[454m,1449m	1458m,1426w	1430m, 1369s	1456m,1422m	
1360s,1335m	1426m,1410w	1421m.1412m	1409m.1385w	1412m.1390w	1422m, 1410m	1411m,1395w	1361m,1346m	1412m,1391w	$+ v_{c \cdot N} + \delta_{c \cdot H_3}$
1.290m,1222m	m1781,w2681	1.390w.1.365m	1.363m,13.30w	1369m,1335w	1.390w.1.369m	1370w.1338w	1.303w,1275w	1368m,1335w	
.0.wm2c11	m8621,W9661	m0621.w1531	1220m, 1200m	W1021.WC21	mc621,w1551	W2071,W8421	1140-1188W	M6C71.W6671	
	1229s.1210m	1202m.1170w	1169w.	1170w.	1171mw.	1174w.	1119m.sh	1170w.	
	1178w,1170w 1141ms	1137ms	1136ms	1140ms	1137ms	1141ms		1139ms	
	1133ms,1119	1109ms	1100ms	1130ms,1118	1108s	1108s	1097s.sh	1099s	v.(ClO.)
	ms,110%s.	1082ms	1078ms	ms, 1100s,	1080s.b	1087ms	1062s	1069s	
	1083s,1066ms			1085s, 1060s				•	
1050w,1010w	1042w.1018w	1039w.1020w	1038w,1018v.w.	1042w, 1020w	1045w,1020w	1043w,1022w	1050m,1012w	1044w,1018w	Rine vibrations
960vw.932vw	1000w.977vw	995vw,982vw	975vw.h	990vw,975vw	978vw,961vw	980vw,962vw	982w.955w	970vw,h	
	943w.936w	937w	935w	9.39w.h	936mw	941 w	925w.b	936w	v1(ClO4)
880w.845mw	891 mw.868 mw	884m.860m	882mw,858mw	886m,863m	887mw,859mw	890w,869w	860w.vb.	888w.862w	Ding uibratione
775vw,750w	783w,762mw	780w,760mw	778vw.759mw	780w,760mw	780w,760mw	783w,766w	802w,775w	780w.761w	NING VINIAUM
735w,712mw	749mw.729m	749mw,729m	748w.739mw	750mw,730mw	750mw.730mw	754w.736w	753w.728vs.	750w.730w	+ ô + ô
d'wcco	mc/o/m180 667w.sh	0 /9m,000w	080m,003mw	690vw.680m 667mw	6X0mw.664w. sh	6X/m,662w. sh	0,000W.Sh	681m.65/w.	
	644mw.633ms	627m,617m	629m,614m	645mw,632m	631m,616m	630mw,619m	633m.620m	628m.617m	v.(ClO.)
	622m,615m, 607m,sh			626m,618m 609m				~	ł
598m.552w	589w,547vw	600w,550vw	600w,548vw	597w.550vw	595w,550vw	600w,545vw	598m,552vw	599w,552vw)	
525w.505w	511m,507m	509m,492w	508mw,488vw	509w,453mw	510w,487vw	510w.490vw	490vw,b,	540w,452w	v Ligand (600-
489w,435w	490vw,456mw	453mw,420w	417w,390vw	420w.372w	427w,420w	423w,380w	440w,412w	420w,372w	230 cm ⁻¹)
402vw.381vw 350vw.310vw 7617365	423w.377w 360w.315w 247mu: b	390w,370w 350w,238mw	370w,236mw	244mw,b	381w,239mw	238mw,b	375w,240mw	245mw.b /	
AIIICC7' A 107	0°4111/470			40.2	100.	4(1-1-	476 24	474	
	M0/+***00+	***	4/2W	M404'MC04	450w	4/2W,SII 458m	IIS'MC/+	4/4W,SII	
	335w	328w	319w	331w	324w	326w	336w.b	325w	v., o(perchlorato)
	277w,b	284w,253mw	263w,249mw	274w,b	271w,255mw	274w,257mw	304w,sh, 275w,b	280w,251mw	ZWA

TABLE II Relevant Infrared Data for the New thH Adducts with Metal Perchlorates (cm $^{-1}$).

270

THEOBROMINE COMPLEXES

TABLE III

Solid-state (Nujol mull) Electronic Spectra, Magnetic Properties (300 K) and Molar Conductivities of tbH Adducts with Metal Perchlorates.^a

Complex	λ _{max} , nm	$10^{6 cor}_{\chi M} cgsu$	$\mu_{eff}, \mu B$	$\Lambda_{\rm M}, \Omega^{-1} {\rm cm}^2 {\rm mol}^{-1}$
$Cr(tbH)_2(ClO_4)_3$	197vvs, 244vvs, 270vvs, 302vs,sh, 354s,sh, 436ms, 464ms, 577m,b, 604m, 657m	5932	3.79	11
$Mn(tbH)_2(ClO_4)_2$	199vvs, 245vvs, 280vvs, 304vs,sh, 349s,sh, 460m,b	14,720	5.97	25
$Fe(tbH)_2(ClO_4)_2 \cdot H_2O$	200vvs, 245vvs, 279vvs, 307vs,sh, 360s,sh, 475m,sh, 695mw,b, 827mw,b, 950mw,b, 1420w,b	10,257	4.98	20
$Fe(tbH)_2(ClO_4)_3$	204vvs, 243vs, 250vs, 278vs, 303s, 350s,sh, 442m,sh 545mw,b	15,121	6.05	14
Co(tbH) ₂ (ClO ₄) ₂ ·H ₂ O	202vvs, 241vvs, 280vvs, 304vs,sh, 355s,sh, 461ms, 520ms, 560ms, 625m, 772m,b, 885w,b, 1010w,b, 1920vw,b	8533	4.54	30
Ni(tbH) ₂ (ClO ₄) ₂ ·H ₂ O	197vvs, 240vvs, 277vvs, 303vs,sh, 348s,sh, 452ms,sh 487m, 570m, 642mw,b, 755mw,b, 904w,b, 1020w,b, 1300vw, 1820vw,b	4839	3.42	27
$Cu(tbH)_2(ClO_4)_2$	196vvs, 243vvs,sh, 268vvs,b, 276vs,sh, 307vs,sh, 347s,sh, 405ms, 812m,b	1615	1.98	37
$Zn(tbH)_2(ClO_4)_2$	200vvs, 247vvs, 281vs, 305vs,sh, 355ms,sh	Diama	agnetic	22

^a UV spectrum of free tbH (Nujol mull), nm: 200vvs, 232vs, 273vvs, 301s,sh. Reported aqueous solution spectrum at pH 6–7: 271 nm, log ε 4.01.⁵² Conductance measurements were performed at 25°C on $10^{-3}M$ solutions of the complexes in a 1 : 1 (v/v) mixture of nitromethane and acetone.

RESULTS AND DISCUSSION

IR and conductance Data

Table II gives relevant IR spectral data for tbH and the new complexes. Band assignments for free tbH were based on reported complete or partial IR spectra of the free base or its metal complexes, $^{9-11,13,14,32}$ and band assignments for xanthine, 33 tpH⁴ and caf. $^{34-36}$ Among the ligand bands in the v_{CH} + v_{NH} region, those at 3112 and 2825 cm⁻¹ involve a v_{C8-H} contribution, while those at 3150 and 3030 cm⁻¹ are probably pure v_{NH} absorptions. $^{9,11,13,14,32-36}$ No attempts at distinguishing between v_{C2=0} and v_{C6=0} were made; these modes were *assigned* to absorptions at 1702 and 1660 cm⁻¹, respectively, in the IR spectrum of caf, 36 while in that of xanthine the same modes were *assigned* to bands at 1672 and 1702 cm⁻¹, respectively. 33 In the spectra of the new complexes, neither the v_{CH} + v_{NH} nor the v_{Ce0} bands of the free ligand undergo significant changes. This is consistent with the presence of neutral tbH ligands not involved in binding through a C=O oxygen atom. 4,10,11,13,14,33,37 It should be mentioned at this point that xanthine and its derivatives do not show a tendency to bind through the C=O oxygen. Bonding of this type has been established in only a few cases, as, for instance, for tp⁻ chelation to

Cu²⁺ via O6,N7, involving a strong Cu–N7 and a weak Cu–O6 (bond length 2.9– 3.3Å) bond.³⁸ Coordination of tbH through ring nitrogens in the new complexes is suggested by significant shifts and splittings of the free ligand $v_{C=C}$, $v_{C=N}$ and ring vibrational modes at 1600–1150 cm⁻¹ upon complex formation.^{4,10,11,13,14,33,37} The $v(ClO_4)$ bands in the spectra of the complexes suggest that these compounds contain exclusively coordinated perchlorato ligands. Thus, both v_1 and v_2 (ClO₄) are IRactive, while the v_3 and v_4 modes are each split into two components in the M^{2+} and five components in the M^{3+} complexes.^{39,40} This is interpreted in terms of the exclusive presence of unidentate –OClO₃ ligands in the M^{2+} and both uni- and bi-dentate perchlorato ligands (–OClO₃ and =O₂ClO₂) in the M^{3+} complexes.^{4,39,40} The presence of exclusively coordinated perchlorate was previously reported for tpH complexes with various 3d M^{2+} perchlorates⁴ and an adenine adduct with $Ru(ClO_4)_3$.⁴¹ It should be pointed out that a medium-strong to strong band observed at 1141-1136 cm⁻¹ in the spectra of the new complexes is not due to a component of $v_3(ClO_4)$, but a tbH ligand vibration. In fact, a medium intensity band at ca 1140 cm⁻¹ is also observed in the spectra of metal chloride complexes with theobromine, such as Pd(tbH)(tb)Cl and ZrO(tbH)₂(tb)Cl·H₂O;^{13,14} this ligand band is intensified due to partial overlap with the very strong $v_3(ClO_4)$ absorption in the spectra of the complexes herein reported. The v_{OH} and δ_{HOH} modes of coordinated water appear at 3480–3455 and 1640–1635 cm⁻¹, respectively, in the spectra of the hydrated complexes.⁴² Tentative $v_{M-Ligand}$ band assignments, based on previous studies of tetra-, penta- and hexa-coordinated complexes of various purines,^{4,11,25–30,43,44} aqua^{4,27,28,42–44} and perchlorato^{4,11,29,45} ligands with 3d metal ions for a sumbar form $M = M_{0}^{2+} C u_{0}^{2+} T_{0}^{2+}$ for for M ions, favour coordination number four for $M = Mn^{2+}$, Cu^{2+} , Zn^{2+} , five for $M = Fe^{2+}$, Co^{2+} , Ni^{2+} and six for $M = Cr^{3+}$, Fe^{3+} . The ligand bands at below 500 cm⁻¹ are mostly due to out-of-plane ring vibrations.⁴⁶

The molar conductivity values for the new complexes (Table III) in nitromethane– acetone either correspond to non-electrolytes or are intermediate between values reported for non- and 1: 1-electrolytes.⁴⁷ In the latter case, partial displacement of perchlorato ligands by solvent molecules ((CH_3)₂C=O or CH_3NO_2) presumably occurs in solution. The conductance data support the IR evidence, indicating that the complexes contain exclusively coordinated perchlorate in the solid state.

Electronic Spectra and Magnetic Moments

The ambient temperature magnetic moments of the new complexes (Table III) are generally normal for high-spin $3d^3-3d^8$ compounds or the $3d^9$ configuration.⁴⁸ In addition, the μ_{eff} values for the Co^{2+} (4.54 µB) and Ni²⁺ (3.42 µB) complexes are within the ranges corresponding to high-spin pentacoordinated compounds of these metal ions.⁴⁹⁻⁵¹ The UV spectrum of tbH (Nujol mull¹¹ and aqueous solution⁵² spectra previously reported: Table III) undergoes shifts and splitting of the $\pi \to \pi^*$ transition bands (232, 273 nm) upon metal complex formation. The observed trend is shifting of these bands toward lower energies. The $n \to \pi^*$ transition band of the ligand (301 nm)⁵³ appears at 302–307 nm in the spectra of the complexes. Strong metal-to-ligand charge-transfer absorption, originating in the UV and trailing off into the visible region is observed in the spectra of the new paramagnetic complexes.⁵⁴ The d-d spectrum of the Cr³⁺ complex is compatible with a low symmetry hexacoordinated configuration: ${}^{4}A_{2g}(F) \to {}^{4}T_{1g}(F)$ 436, 464; $\to {}^{4}T_{2g}(F)$ 577, 604, 657 nm.⁵⁵ The calculated approximate Dq value is 1632 cm⁻¹, similar to that of $[Cr(tpH)_2(OClO_3)_2(OH_2)_2]ClO_4$ (1634 cm⁻¹).⁴ The d-d spectra of the Fe²⁺, Co²⁺ and Ni²⁺ complexes are characterized by multiple maxima at 690–1420, 461–1920 and 452–1820 nm, respectively, as expected for pentacoordinated compounds of these metal ions.^{55–58} The previously reported Cu²⁺ complex exhibits its main d-d maximum at 812 nm;¹¹ this spectrum is consistent with a distorted tetrahedral configuration.^{44,59–61}

On the basis of the overall evidence discussed, the new complexes appear to be monomeric adducts with exclusively coordinated perchlorate and terminal unidentate tbH ligands, coordinating either via the imidazole N9 or the pyrimidine N1 ring nitrogen.^{11,12,15} The Mn^{2+} and Zn^{2+} complexes are distorted tetrahedral analogues of the previously reported Cu^{2+} complex. The Fe²⁺, Co²⁺ and Ni²⁺ adducts involve an aqua ligand in addition to two tbH and two -OClO₃ ligands and are pentacoordinated. The Cr³⁺ and Fe³⁺ complexes are low symmetry hexacoordinated species with two terminal tbH, two unidentate and one bidentate perchlorato ligand. The presence of both unidentate and bidentate chelating perchlorato ligands was previously proposed for tpH adducts with Co^{2+} and Mn^{2+} perchlorates.⁴ Regarding the types of 2:1 adducts between tpH^{4,11} or tbH (this work) and 3d metal perchlorates prepared in these laboratories, only those with Cu²⁺ and Zn²⁺ are of the same type (distorted tetrahedral $[ML_2(OClO_3)_2]$). The Mn²⁺ tbH complex is also of the preceding type, but the tpH analogue is pentacoordinated with one $-OClO_3$ and one chelating $=O_2ClO_2$ ligand.⁴ The M³⁺ (Cr, Fe) complexes with tbH are water-free and involve both unidentate and bidentate coordinated perchlorate, whilst the corresponding tpH adducts are dihydrates with two $-OClO_3$ and two aqua ligands and one ionic $ClO_4^{-.4}$ Finally, Fe^{2+} , Co^{2+} and Ni^{2+} yielded pentacoordinated monohydrates with tbH. The corresponding⁴ tpH Fe^{2+} complex was also a monohydrate, but contained both ionic and coordinated unidentate perchlorate (distorted tetrahedral, viz, $[Fe(tpH)_2(OClO_3)(OH_2)]ClO_4$). Co²⁺ formed an anhydrous pentacoordinated adduct, similar to its Mn²⁺ analogue. Ni²⁺ yielded the dihydrate $[Ni(tpH)_2(OClO_3)_2(OH_2)_2]$. A Co²⁺ complex of the latter type was formed upon exposure of the anhydrous $[Co(tpH)_2(OClO_3)(=O_2ClO_2)]$ to atmospheric moisture.⁴ It is somewhat surprising that two very similar ligands, such as tbH and tpH, produce structurally different 2:1 adducts with many 3d metal perchlorates. This applies not only to differences between anhydrous vs hydrated species, but also to complexes of exactly the same stoichiometries (specifically $MnL_2(ClO_4)_2$ and $FeL_2(ClO_4)_2 \cdot H_2O; L = tbH, tpH).$

REFERENCES

- C.M. Mikulski, M.K. Kurlan, M. Bayne, M. Gaul and N.M. Karayannis, Abstr., 193rd Natl. Meetg., Am. Chem. Soc., Denver, Colorado, April 5–10, 1987; No. INOR 340.
- 2. R.H. Barry, H. Rubin, J.B. Johnson and J.H. Lazarus, J. Pharm. Sci., 70, 204 (1981).
- J.E. Byfield, J. Murnane, J.F. Ward, P. Calabro-Jones, M. Lynch and F. Kulhanian, Br. J. Cancer, 43, 669 (1981); J.J. Roberts and M.F. Pera Jr., in "Platinum, Gold and Other Metal Chemotherapeutic Agents", S.J. Lippard (ed.), ACS Symposium Series, 209, 3 (1983).
- C.M. Mikulski, M.K. Kurlan, S. Grossman, M. Bayne, M. Gaul and N.M. Karayannis, J. Coord. Chem., 15, 347 (1987) and refs. therein.
- G.W. Bushnell, R.J. Densmore, K.R. Dixon and A.C. Ralfs, Can. J. Chem., 61, 1132 (1983); D.M.L. Goodgame, P.B. Hayman, R.T. Riley and D.J. Williams, Inorg. Chim. Acta, 91, 89 (1984); G. Pneumatikakis, Inorg. Chim. Acta, 93, 5 (1984).
- H. Horie, S. Husebye, M. Kato, E.A. Meyers, Y. Muto, I. Suzuki, T. Tokii and R.A. Zingaro, Acta Chem. Scand., 40A, 579 (1986); V.F. Ivanov, A.I. Stetsenko, B. Jeżowska-Trzebiatowska, V.G. Duibanova and A.F. Imsyrova, Koord. Khim., 12, 810 (1986).

- 7. F.H. Herbstein and M. Kapon, Phil. Trans. Roy. Soc. London, 291A, 14 (1979).
- 8. J. Nishijo and I. Yonetani, J. Pharm. Sci., 71, 354 (1982).
- 9. D. Cook and Z.R. Regnier. Can. J. Chem., 45, 2899 (1967); 46, 3055 (1968).
- 10. W. Beck and N. Kottmair, Ber., 109, 970 (1976).
- 11. C.M. Mikulski, T.B. Tran, L. Mattucci and N.M. Karayannis, Inorg. Chim. Acta, 78, 269 (1983).
- 12. M. Melnik and P. Sharrock, Abstr., XXIII ICCC, Boulder, Colorado, Jul. 29-Aug. 3, 1984; No. THa-44-7.
- 13. C.M. Mikulski, S. Grossman, C.J. Lee and N.M. Karayannis, Trans. Met. Chem., 12, 21 (1987).
- 14. C.M. Mikulski, S. Grossman and N.M. Karayannis, J. Less-Common Met., 136, 41 (1987).
- 15. E.H. Crowston, D.M.L. Goodgame, P.B. Hayman, A.M.Z. Slawin and D.J. Williams, *Inorg. Chim. Acta*, **122**, 161 (1986).
- 16. E.H. Griffith and E.L. Amma, Chem. Comm., 322 (1979).
- 17. K. Aoki and H. Yamazaki, Chem. Comm., 186 (1980).
- 18. A.R. Norris, R. Kumar, E. Buncel and A.L. Beauchamp, J. Inorg. Biochem., 21, 277 (1984).
- 19. T. Sorrell, L.G. Marzilli and T.J. Kistenmacher, J. Am. Chem. Soc., 98, 2181 (1976).
- 20. M. Biagini Cingi, A.M. Manotti Lanfredi and A. Tiripicchio, Acta Cryst., C39, 1523 (1983).
- 21. D.J. Hodgson, Progr. Inorg. Chem., 23, 211 (1977).
- 22. D. Lichtenberg, F. Bergmann and Z. Neiman, J. Chem. Soc., C, 1676 (1971).
- 23. Li-Ming Twanmoh, H.B. Wood Jr., and J.S. Driscoll, J. Het. Chem., 10, 187 (1973).
- 24. E. Dubler, G. Hänggi and W. Bensch, J. Inorg. Biochem., 29, 269 (1987).
- A.N. Speca, C.M. Mikulski, F.J. Iaconianni, L.L. Pytlewski and N.M. Karayannis, *Inorg. Chem.*, 19, 3491 (1980).
- 26. A.N. Speca, C.M. Mikulski, F.J. Iaconianni, L.L. Pytłewski and N.M. Karayannis, J. Inorg. Nucl. Chem., 43, 2771 (1981).
- 27. C.M. Mikulski, T.B. Tran, L. Mattucci and N.M. Karayannis, Inorg. Chim. Acta, 78, 211 (1983).
- 28. C.M. Mikulski, L. Mattucci, Y. Smith, T.B. Tran and N.M. Karayannis, *Inorg. Chim. Acta*, 80, 127 (1983).
- 29. C.M. Mikulski, M.K. Kurlan, M. Bayne, M. Gaul and N.M. Karayannis, *Inorg. Chim. Acta*, 123, 27 (1986).
- 30. C.M. Mikulski, M.K. Kurlan, C.J. Lee, M. Bayne, M. Gaul and N.M. Karayannis, *Inorg. Chim. Acta*, 108, L15 (1985).
- N.M. Karayannis, L.L. Pytlewski and M.M. Labes, *Inorg. Chim. Acta*, 3, 415 (1969); N.M. Karayannis, C.M. Mikulski, M.J. Strocko, L.L. Pytlewski and M.M. Labes, *Inorg. Chim. Acta*, 8, 91 (1974).
- 32. E.R. Blout and M. Fields, J. Am. Chem. Soc., 72, 479 (1950).
- 33. F. Allaire and A.L. Beauchamp, Can. J. Chem., 62, 2249 (1984).
- 34. D. Cook and Z.R. Regnier, Can. J. Chem., 45, 2895 (1967).
- 35. S. Goenechea, Mikrochim. Acta, 276 (1972).
- 36. J. De Taeye and T. Zeegers-Huyskens, Spectrosc. Lett., 19, 299 (1986).
- 37. S. Shirotake and T. Sakaguchi, Chem. Pharm. Bull., 26, 2941 (1978).
- 38. D.J. Szalda, T.J. Kistenmacher and L.G. Marzilli, J. Am. Chem. Soc., 98, 8371 (1976); T.J.
- Kistenmacher, D.J. Szalda, M. Rossi, C.C. Chiang and L.G. Marzilli, *Inorg. Chem.*, 17, 2582 (1978).
 B.J. Hathaway and A.E. Underhill, *J. Chem. Soc.*, 3091 (1961); B.J. Hathaway, D.G. Holah and M.
- Hudson, J. Chem. Soc., 4586 (1963).
 40. A.E. Wickenden and R.A. Krause, Inorg. Chem., 4, 404 (1965); S.F. Pavkovic and D.W. Meek,
- A.L. Witchnein and K.A. Riade, *marg. Chem.*, 4, 404 (1965), S.F. Favkorte and D.W. Bick, *Inorg. Chem.*, 4, 1091 (1965); M.E. Farago, J.M. James and V.C.G. Trew, *J. Chem. Soc.*, A, 820 (1967).
- 41. B.T. Khan, A. Gaffuri, P.N. Rao and S.M. Zakeeruddin, Polyhedron, 6, 387 (1987).
- 42. I. Nakagawa and T. Shimanouchi, Spectrochim. Acta, 20, 429 (1964).
- A.N. Speca, C.M. Mikulski, F.J. Iaconianni, L.L. Pytlewski and N.M. Karayannis, *Inorg. Chim. Acta* 46, 235 (1980).
- C.M. Mikulski, L. Mattucci, L. Weiss and N.M. Karayannis, *Inorg. Chim. Acta*, 107, 81 (1985); 108, L35 (1985).
- 45. J.R. Ferraro and A. Walker, J. Chem. Phys., 42, 1273, 1278 (1965).
- 46. C.P. Beetz Jr., and G. Ascarelli, Spectrochim. Acta. 36A, 299 (1980).
- 47. W.J. Geary, Coord. Chem. Rev., 7, 81 (1971).
- 48. B.N. Figgis and J. Lewis, Progr. Inorg. Chem., 6, 37 (1964).
- 49. L. Sacconi, J. Chem. Soc., A, 248 (1970).
- A.M. Brodie, S.H. Hunter, G.A. Rodley and C.J. Wilkins, *Inorg. Chim. Acta*, 2, 195 (1968); A.M. Brodie, J.E. Douglas and C.J. Wilkins, *J. Chem. Soc.*, A, 1931 (1969).
- 51. C.M. Mikulski, J. Unruh, L.L. Pytlewski and N.M. Karayannis, Trans. Met. Chem., 4, 98 (1979).

THEOBROMINE COMPLEXES

- 52. W. Pfleiderer and G. Nübel, Justus Liebigs Ann. Chem., 647, 155 (1961).
- 53. L.B. Clark and I. Tinoco Jr., J. Am. Chem. Soc., 87, 11 (1965); L.B. Clark, J. Am. Chem. Soc., 99, 3934 (1977).
- 54. A.B.P. Lever, J. Lewis and R.S. Nyholm, J. Chem. Soc., 1235 (1962); 3156, 5042 (1963); 1187, 4761 (1964).
- 55. W. Byers, A.B.P. Lever and R.V. Parish, Inorg. Chem., 7, 1835 (1968).
- 56. I. Bertini, P. Dapporto, D. Gatteschi and A. Scozzafava, Inorg. Chem., 14, 1639 (1975).
- 57. M. Ciampolini and N. Nardi, Inorg. Chem., 5, 41, 1150 (1966); 6, 445 (1967).
- 58. M. Ciampolini and G.P. Speroni, Inorg. Chem., 5, 45 (1966).
- 59. T. Beringhelli, M. Freni, F. Morazzoni, P. Romiti and R. Servida, Spectrochim. Acta, 37A, 763 (1981).
- 60. N.B. Behrens, D.M.L. Goodgame and Z. Warnke, Inorg. Chim. Acta, 31, 257 (1978).
- 61. D. Crăciunescu and I. Mihalcea, Rev. Real Acad. Cienc. Ex. Fis. Nat. Madrid, 64, 1039 (1970).